
Eur. Phys. J. B 54, 419–421 (2006)
DOI: 10.1140/epjb/e2007-00022-x THE EUROPEAN

PHYSICAL JOURNAL B

Determination of the density of states in high-Tc thin films using
FET-type microstructures

T.M. Mishonova and M.V. Stoevb

Department of Theoretical Physics, Faculty of Physics, University of Sofia St. Kliment Ohridski, 5 J. Bourchier Boulevard,
1164 Sofia, Bulgaria

Received 30 June 2006 / Received in final form 2 october 2006
Published online 24 January 2007 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2007

Abstract. A simple electronic experiment using a field-effect-transistor–type microstructure is suggested.
The thin superconductor layer forms the source-drain channel of a layered structure across which an AC
current is applied. It is found necessary to measure the second harmonic of the source-gate voltage, and
the third harmonic of the source-drain voltage; these electronic measurements then give the logarithmic
derivative of the density of states, which is an important consideration when fitting parameters of the band
structure.

PACS. 74.78.-w Superconducting films and low-dimensional structures – 71.20.-b Electron density of
states and band structure of crystalline solids – 74.78.Bz High-Tc films – 73.50.Lw Thermoelectric effects

1 Introduction

The importance of the density of states (DOS) in the
physics of high-Tc cuprates has been discussed in many
papers [1–10] The purpose of the present work is to sug-
gest a simple electronic method for determination of the
DOS. The proposed experiment requires the preparation
of a field-effect transistor (FET)-type microstructure, and
involves standard electronic measurements. The FET con-
trols the current between two points, although in a dif-
ferent manner than when using a bipolar transistor. The
FET relies on an electric field to control the shape, and
hence the conductivity, of a “channel” in a semiconductor
material. The shape of the conducting channel in a FET
is altered when a potential difference is applied across the
gate terminal (this potential being relative to either the
source or the drain). This causes the flow of electrons to
change in width, and thus controls the voltage between
the source and the drain. If the negative voltage applied
to the gate is sufficiently high, it can remove all of the
electrons from the gate, and hence close the conductive
channel in which the electrons flow, blocking the FET.

The system considered in this work operates in a
hydrodynamic regime; that is, a low-frequency regime
wherein the temperature of the superconducting film adi-
abatically follows the dissipated ohmic power. All of the
working frequencies of the lock-ins (up to, say, 100 kHz)
are low enough to lie within this regime. Investigations
on superconducting bolometers have shown that it is only
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necessary to take into account the heat capacity of the
superconducting film when operating in the MHz range.
See, for example, reference [11] and references therein.
In the present work, we propose an experiment involv-
ing a FET for which we need to measure the second har-
monic of the source-gate voltage and the third harmonic of
the source-drain voltage. Other, higher harmonics will be
present in the measurements (e.g. from the leads), which
can in principle also be used for a determination of the
density of states. An analogous experiment has already
been performed for investigation of thermal interface re-
sistance [12]. The experiment suggested here can be per-
formed using essentially the same experimental set-up,
equipment and a FET sample.

2 Determination of the logarithmic derivative
of the density of states by electronic
measurements

This paper aims to suggest a simple electronic experiment
by which to determine the logarithmic derivative of the
density of states by electronic measurements, using a thin
film of the material Tl:2201. The thickness of the samples
should be typical for the investigation of high-Tc films, say
50–200 nm. Such films are sufficiently thick to exhibit the
properties of the bulk phase. The numerical value of the
parameter

ν ′(EF ) =
dν(ε)
dε

, (1)
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Fig. 1. Schematic illustration of a field-effect transistor (FET).
The current I(t) flowing between the source (S) and the
drain (D) has a frequency ω. The electrons, as they run through
the transistor, create a voltage USG between the source (S)
and the gate (G). The source-gate voltage should be measured
at doubled frequency 2ω, while source-drain voltage USD at
tripled frequency 3ω.

gives the possibility for the absolute determination of the
hopping integrals.

We propose a FET from Tl:2201 (Fig1) to be electron-
ically investigated, with lock-in at the second and third
harmonics. Let us consider a strip of Tl:2201, and between
the ends of the strip (the source (S) and the drain (D)),
apply an AC current

ISD(t) = I0 cos(ωt). (2)

For sufficiently low frequencies, the ohmic power P causes
the temperature of the film T to rise above the ambient
temperature T0, where

P = RI2
SD = α(T − T0), (3)

and the constant α determines the boundary thermo-
resistance between the Tl:2201 film and the substrate, and
R(T ) is the temperature-dependent source-drain (SD) re-
sistance. We assume that for thin films, the temperature
is almost homogeneous across the film’s thickness. In this
way, we obtain for the temperature oscillations

(T − T0) =
RI2

SD

α
=

RI2
0

α
cos2 (ωt). (4)

Since the resistance is weakly temperature dependent,

R(T ) = R0 + (T − T0)R0
′, R0

′(T0) =
dR(T )

dT

∣
∣
∣
∣
T0

. (5)

Substituting in the temperature oscillations from equa-
tion (4) leads to a small time variation in the resistance:

R(t) = R0

(

1 +
R′

0

α
I2
0 cos2(ωt)

)

. (6)

We can now calculate the source-drain voltage as

USD(t) = R(t)ISD(t). (7)

Substituting in the SD current from equation (2) and the
SD resistance from equation (6) gives the SD voltage as

USD(t) = U
(1f)
SD cos(ωt) + U

(3f)
SD cos(3ωt). (8)

The coefficient of the first harmonic U
(1f)
SD ≈ R0I0 is de-

termined by the SD resistance R0 at low currents I0,
while for the third-harmonic signal, the elementary for-
mula cos3 (ωt) = (3 cos (ωt) + cos (3ωt))/4 can be used to
obtain

U
(3f)
SD =

U
(1f)
SD

4α
I2
0R′

0. (9)

From this formula, we can express the boundary thermo-
resistance by electronic measurements as

α =
U

(1f)
SD

4U
(3f)
SD

I2
0R′

0. (10)

Application of the method requires fitting of R(T ), and
numerical differentiation at a working temperature T0; lin-
ear regression is probably the simplest method if we only
need to know one point.

At known α, we can express the time oscillations of
the temperature by substituting in equation (4), i.e.

T =T0+
RI2

0

2α
(1 + cos(2ωt))≈T0

(

1+
RSDI2

0

2αT0
cos(2ωt)

)

.

(11)
Under this approximation, terms containing I4

0 are ne-
glected and the shift from the average temperature of the
film is considered to be small.

The variations in the temperature lead to variations in
the work function of the film, according to a formula well
known from the physics of metals:

W (T ) = −π2

6e

ν ′

ν
k2

BT 2, ν ′(EF ) =
dν

dε

∣
∣
∣
∣
EF

, (12)

where the logarithmic derivative of the density of states
ν(ε) (taken at the Fermi energy EF ) has dimensions of
inverse energy, the work function W has dimensions of
voltage, T is the temperature in kelvins, and kB is Boltz-
mann’s constant. For an introduction, consult standard
textbooks on statistical physics and on the physics of
metals.[13,14]. Substituting in the temperature variations
from equation (11) gives

W = −π2k2
B

6e

ν ′

ν
T 2

0

[

1 +
R0I

2
0

αT0
cos(2ωt)

]

+ O(I4
0 ), (13)

where O-function indicates that the terms involving I4
0 are

negligible.
The oscillations in the temperature create AC oscilla-

tions in the source-gate (SG) voltage. We assume that a
lock-in with a preamplifier, with sufficiently high internal
resistance, is switched between the source and the gate.
Under these conditions, the second harmonics of both the
work function and the SG voltage are equal, i.e.

U
(2f)
SG = −π2k2

B

6e

ν ′

ν
T 2

0

R0I
2
0

αT0
,

USG(t) = U
(2f)
SG cos(2ωt) + U

(4f)
SG cos(4ωt) + . . . (14)
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Substituting in α from equation (10), we have

U
(2f)
SG = −4π2k2

B

6e

ν ′

ν

U
(3f)
SD

I0

T0

R′
0

. (15)

From this equation, we can finally express the sought-for
logarithmic derivative of the density of states,

d ln ν(ε)
dε

∣
∣
∣
∣
EF

=
ν ′

ν
= − 3e

2π2k2
B

I0

T0

U
(2f)
SG

U
(3f)
SD

dR

dT
. (16)

By this method, the logarithmic derivative of the den-
sity of states can be determined solely by electronic mea-
surements using a FET. This important energy parameter
can be used for an absolute determination of the hopping
integrals in the generic Linear Combination of Atomic
Orbitals (LCAO) model. The realisation of this experi-
ment could be regarded as a continuation of previously
published, detailed theoretical and experimental investi-
gations, and by having a set of complementary studies,
we can reliably determine the LCAO parameters.

One of the authors (TM) is thankful to J. Bouvier, J. Bok,
P. Bernstein and J.-P. Maneval for stimulating discussions.
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